SOME NEW b*g-CONTINUOUS FUNCTIONS IN TOPOLOGICAL SPACES M.Mari Vidhya¹, K.Bala Deepa Arasi² and V.Maheswari³ ¹ Research Scholar, A.P.C. Mahalaxmi College for Women, Thoothukudi, TN, India. marividhya2@gmail.com ² Assistant Professor, PG & Research Department of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi, TN, India. # baladeepa85@gmail.com ³ Assistant Professor, PG & Research Department of Mathematics, of Mathematics, A.P.C. Mahalaxmi College for Women, Thoothukudi, TN, India. **Abstract:** The determination of this paper is to introduce some new functions namely strongly b*g-continuous, slightly b*g-continuous, perfectly b*g-continuous and totally b*g-continuous functions using b*g-closed sets and we investigate some of its properties. Additionally, we relate and compare these functions with some other known existing functions in topological spaces. Keywords: b*ĝ-closed sets, b*ĝ-continuous, contra b*ĝcontinuous, strongly b*ĝ-continuous, slightly b*ĝcontinuous, perfectly b*g-continuous and totally b*gcontinuous. Classification: **AMS Mathematics** Subject 54C08,54C10. # 1. INTRODUCTION In 1960, N.Levine [5] introduced the strong continuity in topological spaces. RC Jain [4] established the concept of totally continuous function and slightly continuous functions in topological spaces. In 2016, K.Bala Deepa Arasi and G.Subasini [1] introduced the b*g-closed sets and studied their properties in topological spaces. A subset A is called so if b*Cl(A) ⊆U whenever A⊆U and U is ĝ-open in X. Later, in 2017, we [2] defined a new version of maps namely b*gcontinuous, b*ĝ-irresolute functions; b*ĝ-open map, b*g-closed map and contra b*g-continuous function in topological spaces. Also, we proved some properties of these functions and studied their relationships with the other existing functions. By continuing this work, we introduce a new functions namely strongly b*g-continuous, slightly b*gcontinuous, perfectly b*g-continuous and totally b*gcontinuous functions in topological spaces and we investigate some of its properties. Additionally, we relate and compare these functions with some other known existing functions in topological spaces. #### 2. PRELIMINARIES Throughout this paper (X, τ) (or simply X) represents topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of (X, τ) , Cl(A), Int(A) and A^c denote the closure of A, interior of A and the complement of A respectively. We are giving some definitions. #### **Definition 2.1** - 1) A subset A of a topological space (X,) is said to be a **b*\hat{\mathbf{g}}-closed set** [1] if **b***Cl(A) \subseteq U whenever $A \subseteq U$ and U is \hat{g} -open in X. The complement of a b*g-closed set is called b*gopen set. - 2) A space (X, τ) is called a $T_{b*\hat{g}}$ -space [1], if every $b*\hat{g}$ -closed set in X is closed. - 3) A space (X, τ) is called a **locally indiscrete space**, if every open set of X is closed in X. **Definition 2.2:** A function $f:(X,\tau) \to (Y,\sigma)$ is called a - 1) **continuous** [2] if $f^{-1}(V)$ is closed in (X, τ) for every closed set V in (Y, σ) . - 2) **b*\hat{\mathbf{g}}-continuous** [2] if $f^{-1}(V)$ is **b*** $\hat{\mathbf{g}}$ -closed in (X, τ) for every closed set V in (Y, σ) . - 3) contra continuous [3] if $f^{-1}(V)$ is closed in (X, τ) for every open set V in (Y, σ) . - 4) contra b* $\hat{\mathbf{g}}$ -continuous [3] if $f^{-1}(V)$ is b* $\hat{\mathbf{g}}$ closed in (X, τ) for every open set V in (Y, σ) . - 5) strongly continuous [5] if $f^{-1}(V)$ is clopen in (X, τ) for every subset V in (Y, σ) . - 6) totally continuous [6] if $f^{-1}(V)$ is clopen in (X, τ) for every open set V in (Y, σ) . - 7) **slightly continuous** [4] if $f^{-1}(V)$ is open in (X, τ) for every clopen set V in (Y, σ) . - 8) **perfectly continuous** [6] if $f^{-1}(V)$ is both open and closed in (X, τ) for every open set V in (Y, σ) . ## 3. STRONGLY b*ê-CONTINUOUS FUNCTION **Definition 3.1:** The function $f:(X,\tau)\to (Y,\sigma)$ is said to be strongly b*g-continuous if the inverse image of every b*g-closed set in Y is closed in X. That is, $f^{-1}(V)$ is closed of (X, τ) for every b* \hat{g} closed set V of (Y, σ) . **Example 3.2:** Let $X = Y = \{a,b,c\}$ with topologies $\tau =$ $\{X,\phi, \{a\},\{b\},\{a,b\},\{a,c\}\}\$ and $\sigma = \{Y,\phi,\{a\},\{b,c\}\}\}$; $\{b,c\}, \{a,c\}\}.$ Define a map $f:(X,\tau) \to (Y,\sigma)$ by f(a) = b, f(b) = a, f(c) = c. Here, f is strongly b* \hat{g} continuous, since the inverse image of $b*\hat{g}C(Y)$ {b,c} and $\{a\}$ are $\{a,c\}$ and $\{b\}$ respectively which are C(X). **Theorem 3.3:** Every strongly continuous function is strongly b*g-continuous. **Proof:** Let $f:(X,\tau) \to (Y,\sigma)$ be strongly continuous function and V be any $b*\hat{g}$ -closed set in Y. Since f is strongly continuous, $f^{-1}(V)$ is closed in X. Hence f is strongly b*g-continuous. Remark 3.4: The converse of the above theorem need not be true as can be seen from the following example. **Example 3.5:** Let $X = Y = \{a,b,c\}$ with topologies $\tau =$ $\{X,\phi,\{b\},\{c\},\{b,c\}\}\$ and $\sigma = \{Y,\phi,\{a,c\}\}\};\ b*\hat{g}C(Y) =$ ${Y,\phi,{b},{a,b}, {b,c}}; C(X) = {X,\phi,{a},{a,b}, {a,c}};$ $C(Y) = \{Y, \phi, \{b\}\}\$. Define a map $f: (X, \tau) \to (Y, \sigma)$ by f(a) = b, f(b) = a, f(c) = c. Here, the inverse image of $b*\hat{g}C(Y)$ {b},{a,b} and {b,c} are {a},{a,b} and {a,c} respectively which are C(X) so f is strongly $b*\hat{g}$ continuous. But the inverse image of C(Y) {b} is {a} which is closed but not open in X so f is not strongly continuous. **Theorem 3.6:** Every strongly b*g-continuous function is b*ĝ-continuous. Let $f:(X,\tau)\to (Y,\sigma)$ be strongly b* \hat{g} continuous function and V be any closed set in Y. By proposition 3.4 in [1], V is b*g-closed set in Y. Since f is strongly b* \hat{g} -continuous, $f^{-1}(V)$ is closed in X. Again by proposition 3.4 in [1], $f^{-1}(V)$ is $b*\hat{g}$ -closed in X. Hence f is $b*\hat{g}$ -continuous. Remark 3.7: The converse of the above theorem need not be true as can be seen from the following example. **Example 3.8:** Let $X = Y = \{a,b,c\}$ with topologies $\tau =$ $\{X,\phi, \{a\},\{b\},\{a,b\}\}\$ and $\sigma = \{Y,\phi,\{a\},\{b,c\}\}\}$; $b*\hat{g}C(Y)$ = $\{Y, \phi, \{a\}, \{b,c\}\}; C(X) = \{X, \phi, \{c\}, \{b,c\}, \{a,c\}\};$ $b*\hat{g}C(X) = \{X, \phi, \{a\}, \{b\}, \{c\}, \{b,c\}, \{a,c\}\}\}$. Define a map $f:(X,\tau)\to (Y,\sigma)$ by f(a)=b, f(b)=a, f(c)=c. Here, the inverse image of C(Y) {a} and {b,c} are {b} and $\{a,c\}$ respectively which are $b*\hat{g}C(X)$ so f is $b*\hat{g}$ continuous. But the inverse image of $b*\hat{g}C(Y)$ {a} is {b} which is not C(X) so f is not strongly $b*\hat{g}$ -continuous. **Theorem 3.9:** If $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to$ (Z, δ) are strongly b* \hat{g} -continuous functions, then $g \circ f: (X, \tau) \to (Z, \delta)$ is strongly b*g-continuous functions. **Proof:** Let V be any $b*\hat{g}$ -closed set in Z. Since g is strongly b* \hat{g} -continuous, $g^{-1}(V)$ is closed in Y. By proposition 3.4 in [1], $g^{-1}(V)$ is b* \hat{g} -closed in Y. Since f is strongly b* \hat{g} -continuous, $f^{-1}(g^{-1}(V))$ is closed in X. By proposition 3.4 in [1], $f^{-1}(g^{-1}(V))$ is $b*\hat{g}$ closed in X. Hence, $g \circ f$ is strongly b* \hat{g} -continuous. **Theorem 3.10:** If $f:(X,\tau) \to (Y,\sigma)$ is strongly b* \hat{g} continuous and $g:(Y,\sigma)\to(Z,\delta)$ is contra b* \hat{g} continuous, then $g \circ f: (X, \tau) \to (Z, \delta)$ is continuous. **Proof:** Let V be any open set in Z. Since g is contra b* \hat{g} -continuous, $g^{-1}(V)$ is b* \hat{g} -closed in Y. Since f is strongly b* \hat{g} -continuous, $f^{-1}(g^{-1}(V))$ is closed in X. Hence $g \circ f$ is contra continuous. **Theorem 3.11:** If $f:(X,\tau) \to (Y,\sigma)$ is strongly b* \hat{g} continuous and $g:(Y,\sigma)\to(Z,\delta)$ is contra b* \hat{g} continuous, then $g \circ f: (X, \tau) \to (Z, \delta)$ is contra b* \hat{g} continuous. **Proof:** Let V be any open set in Z. Since g is contra b* \hat{g} -continuous, $g^{-1}(V)$ is b* \hat{g} -closed in Y. Since f is strongly b* \hat{g} -continuous, $f^{-1}(g^{-1}(V))$ is closed in X. By proposition 3.4 in [1], $f^{-1}(g^{-1}(V))$ is $b*\hat{g}$ -closed in X. Hence $g \circ f$ is contra b* \hat{g} -continuous. **Theorem 3.12:** If $f:(X,\tau) \to (Y,\sigma)$ is continuous and $g:(Y,\sigma)\to(Z,\delta)$ is strongly b* \hat{g} -continuous, then $g \circ f$ is strongly b* \hat{g} -continuous. **Proof:** Let V be any $b*\hat{g}$ -closed set in Z. Since g is strongly b* \hat{g} -continuous, $g^{-1}(V)$ is closed in Y. Since f is continuous, $f^{-1}(g^{-1}(V))$ is closed in X. Hence $g \circ f$ is strongly b* \hat{g} -continuous. **Theorem 3.13**: If $f:(X,\tau) \to (Y,\sigma)$ is $b*\hat{g}$ -continuous and $g:(Y,\sigma)\to(Z,\delta)$ is strongly b* \hat{g} -continuous, then $g \circ f$ is b* \hat{g} -continuous. **Proof:** Let V be any closed set in Z. By proposition 3.4 in [1], V is $b*\hat{g}$ -closed set in Z. Since g is strongly $b*\hat{g}$ continuous, $g^{-1}(V)$ is closed in Y. Since f is b* \hat{g} continuous, $f^{-1}(g^{-1}(V))$ is b* \hat{g} -closed in X. Hence $g \circ f$ is b* \hat{g} -continuous. **Theorem 3.14:** Let X be any topological spaces and Y be a $T_{b^*\hat{g}}$ -space and $f:(X,\tau)\to (Y,\sigma)$ be a map. Then the following are equivalent: - (i) f is strongly $b*\hat{g}$ -continuous - (ii) *f* is continuous - (iii) f is $b*\hat{g}$ -continuous # **Proof:** Let V be any closed set in Y. By (i)⇒(ii) proposition 3.4 in [1], V is b*g-closed set in Y. Then by (i), $f^{-1}(V)$ is closed in X. Hence f is continuous. (ii)⇒(i) Let V be any b*ĝ-closed set in Y. Since Y is a $T_{b*\hat{e}}$ -space, V is closed set in Y. Then by (ii), $f^{-1}(V)$ is closed in X. Hence f is strongly b* \hat{g} continuous. (i) \Rightarrow (iii) The proof follows from theorem 3.6 (iii) \Longrightarrow (i) Let V be any b* \hat{g} -closed set in Y. Since Y is a $T_{b^*\hat{g}}$ -space, V is closed set in Y. Then by (iii), $f^{-1}(V)$ is b* \hat{g} -closed in X. Again since Y is a $T_{b^*\hat{g}}$ -space, $f^{-1}(V)$ is closed in X. Hence f is strongly b* \hat{g} -continuous. ## 4. SLIGHTLY b*g-CONTINUOUS FUNCTION **Definition 4.1:** The function $f: (X, \tau) \to (Y, \sigma)$ is said to be **slightly b*ĝ-continuous** if the inverse image of every clopen set in Y is b*ĝ-closed in X. That is, $f^{-1}(V)$ is b*ĝ-closed of (X, τ) for every clopen set V of (Y, σ) . **Example 4.2** Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X,\phi,\{a\},\{b\},\{a,b\},\{a,c\}\}\}$ and $\sigma = \{Y,\phi,\{a,c\}\};$ b* $\hat{\mathfrak{g}}C(X) = \{X,\phi,\{b\}, \{c\},\{b,c\},\{a,c\}\};$ C(Y) = $\{Y,\phi,\{b\}\}$. Define a map $f\colon (X,\tau)\to (Y,\sigma)$ by f(a)=c, f(b)=b, f(c)=a. Here, f is slightly b* $\hat{\mathfrak{g}}$ -continuous, since the inverse image of clopen in Y {a,c} and {b} are {a,c} and {b} respectively which are b* $\hat{\mathfrak{g}}C(X)$. **Theorem 4.3:** Every slightly continuous function is slightly b*ĝ-continuous. **Proof:** Let f be slightly continuous function and V be a clopen set in Y. Since f is slightly continuous, $f^{-1}(V)$ is closed in X. By proposition 3.4 in [1], $f^{-1}(V)$ is b* \hat{g} -closed. Hence f is slightly b* \hat{g} -continuous. **Remark 4.4:** The converse of the above theorem need not be true as can be seen from the following example. **Example 4.5:** Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X,\phi,\{a\},\{a,b\}\}$ and $\sigma = \{Y,\phi,\{a,c\}\}; \sigma^c = \{Y,\phi,\{b\}\}.$ b* $\hat{g}C(X) = \{X,\phi,\{b\},\{c\},\{b,c\},\{a,c\}\}.$ Define a map $f:(X,\tau) \to (Y,\sigma)$ by f(a) = c, f(b) = b, f(c) = a. Here, the inverse image of clopen in Y {b} and {a,c} are {b} and {a,c} respectively which are b* $\hat{g}C(X)$ but not closed in X. Hence f is slightly b* \hat{g} -continuous but not slightly continuous. **Theorem 4.6:** If $f:(X,\tau) \to (Y,\sigma)$ is slightly b* \hat{g} -continuous and (X,τ) is $T_{b^*\hat{g}}$ -space, then f is slightly continuous. **Proof:** Let V be a clopen set in Y. Since f is slightly b* \hat{g} -continuous, $f^{-1}(V)$ is b* \hat{g} -closed in X. Since X is $T_{b*\hat{g}}$ -space, $f^{-1}(V)$ is closed in X. Hence f is slightly continuous. **Theorem 4.7:** Every b*ĝ-continuous function is slightly b*ĝ-continuous. **Proof:** Let f be $b*\hat{g}$ -continuous function and V be a clopen set in Y. Since f is $b*\hat{g}$ -continuous, $f^{-1}(V)$ is $b*\hat{g}$ -closed in X. Hence f is slightly $b*\hat{g}$ -continuous. **Theorem 4.8:** If $f:(X,\tau) \to (Y,\sigma)$ is slightly b* \hat{g} -continuous and (Y,σ) is a locally indiscrete space, then f is b* \hat{g} -continuous. **Proof:** Let V be any open subset in Y. Since Y is locally indiscrete space, V is closed set in Y. Since f is slightly b* \hat{g} -continuous, $f^{-1}(V)$ is b* \hat{g} -closed in X. Hence f is b* \hat{g} -continuous. **Theorem 4.9:** Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to (Z,\delta)$ be the two functions. Then the following holds: - (i) If f is $b*\hat{g}$ -irresolute and g is slightly $b*\hat{g}$ continuous, then $g \circ f$ is slightly $b*\hat{g}$ continuous. - (ii) If f is $b*\hat{g}$ -irresolute and g is $b*\hat{g}$ -continuous, then $g \circ f$ is slightly $b*\hat{g}$ -continuous. - (iii) If f is $b*\hat{g}$ -continuous and g is slightly continuous, then $g \circ f$ is slightly $b*\hat{g}$ -continuous. - (iv) If f is strongly $b*\hat{g}$ -continuous and g is slightly $b*\hat{g}$ -continuous, then $g \circ f$ is slightly continuous. ### **Proof:** - (i) Let V be a clopen set in Z. Since g is slightly $b*\hat{g}$ -continuous, $g^{-1}(V)$ is $b*\hat{g}$ -closed in Y. Since f is $b*\hat{g}$ -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $b*\hat{g}$ -closed in X. Hence $g \circ f$ is slightly $b*\hat{g}$ -continuous. - (ii) Let V be a clopen set in Z. Since g is $b*\hat{g}$ -continuous, $g^{-1}(V)$ is $b*\hat{g}$ -closed in Y. Since f is $b*\hat{g}$ -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $b*\hat{g}$ -closed in X. Hence $g \circ f$ is slightly $b*\hat{g}$ -continuous. - (iii) Let V be a clopen set in Z. Since g is slightly continuous, $g^{-1}(V)$ is closed in Y. Since f is $b*\hat{g}$ -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is $b*\hat{g}$ -closed in X. Hence $g \circ f$ is slightly $b*\hat{g}$ -continuous. - (iv) Let V be a clopen set in Z. Since g is slightly b* \hat{g} -continuous, $g^{-1}(V)$ is b* \hat{g} -closed in Y. Since f is strongly b* \hat{g} -continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is closed in X. Hence $g \circ f$ is slightly continuous. ## 5. PERFECTLY b*g-CONTINUOUS FUNCTION **Definition 5.1:** The function $f:(X,\tau) \to (Y,\sigma)$ is said to be **perfectly b*\hat{\mathbf{g}}-continuous** if the inverse image of every b* $\hat{\mathbf{g}}$ -closed set in Y is both open and closed in X. That is, $f^{-1}(V)$ is clopen of (X,τ) for every b* $\hat{\mathbf{g}}$ -closed set V of (Y,σ) . **Example 5.2:** Let $X = Y = \{a,b,c\}$ with topologies $\tau = \{X,\phi, \{a\},\{b\},\{a,b\},\{a,c\}\}\}$ and $\sigma = \{Y,\phi,\{c\},\{a,b\}\}\}$; $b*\hat{g}C(Y) = \{Y,\phi, \{a,b\}, \{c\}\}\}$; $C(X) = \{X,\phi,\{b\},\{c\},\{b,c\},\{a,c\}\}\}$. Define a map $f:(X,\tau) \to (Y,\sigma)$ by f(a) = b, f(b) = c, f(c) = a. Here, f is perfectly $b*\hat{g}$ -continuous, since the inverse image of $b*\hat{g}C(Y)$ {c} and {a,b} are {b} and {a,c} respectively which are both closed and open. **Theorem 5.3:** Every perfectly b*g-continuous function is perfectly continuous. **Proof:** Let $f:(X,\tau) \to (Y,\sigma)$ be perfectly b* \hat{g} continuous and V be any closed set in Y. By proposition 3.4 in [1] V is $b*\hat{g}$ -closed in Y. Since f is perfectly $b*\hat{g}$ continuous, $f^{-1}(V)$ is both open and closed in X. Hence f is perfectly continuous. Remark 5.4: The converse of the above theorem need not be true as can be seen from the following example. **Example 5.5:** Let $X = Y = \{a,b,c\}$ with topologies $\tau =$ $\{X,\phi,\{a\},\{c\},\{a,c\},\{b,c\}\}\$ and $\sigma = \{Y,\phi,\{a,c\}\};$ $,\{b\},\{a,b\},\{b,c\}\}.$ Define a map $f:(X,\tau)\to (Y,\sigma)$ by f(a) = b, f(b) = c, f(c) = a. Here, the inverse image of O(Y) {a,c} is {b,c} respectively which is both open and closed in X but the inverse image of $b*\hat{g}C(Y)$ {a,b} is $\{a,c\}$ which is open but not closed in X. Hence f is perfectly continuous but not perfectly b*g-continuous. **Theorem 5.6:** Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to$ (Z, δ) be the two functions. Then the following holds: - (i) If f is perfectly $b*\hat{g}$ -continuous and g is perfectly $b*\hat{g}$ -continuous, then $g \circ f$ is perfectly b*gcontinuous. - (ii) If f is continuous and g is perfectly $b*\hat{g}$ continuous, then $g \circ f$ is perfectly b* \hat{g} -continuous. - (iii) If f is perfectly $b*\hat{g}$ -continuous and g is $b*\hat{g}$ irresolute, then $g \circ f$ is perfectly b* \hat{g} -continuous. - (iv) If f is perfectly $b*\hat{g}$ -continuous and g is $b*\hat{g}$ continuous, then $g \circ f$ is perfectly continuous. - (v) If f is perfectly continuous and g is strongly $b*\hat{g}$ continuous, then $g \circ f$ is perfectly $b*\hat{g}$ -continuous. #### **Proof:** - Let V be a b*g-closed set in Z. Since g is perfectly (i) b* \hat{g} -continuous, $g^{-1}(V)$ is both open and closed in Y. By proposition 3.4 in [1], $g^{-1}(V)$ is both b* \hat{g} open and b*g-closed in Y. Since f is b*ĝ-continuous, $f^{-1}(q^{-1}(V))$ $(g \circ f)^{-1}(V)$ is both open and closed in X. Hence $g \circ f$ is perfectly b* \hat{g} -continuous. - (ii) Let V be a b*ĝ-closed set in Z. Since g is perfectly $b*\hat{g}$ -continuous, $g^{-1}(V)$ is both open and closed in Y. Since f is continuous, $f^{-1}(g^{-1}(V)) =$ $(g \circ f)^{-1}(V)$ is both open and closed in X. Hence $g \circ f$ is perfectly b* \hat{g} -continuous. - (iii) Let V be a b*g-closed set in Z. Since g is b*girresolute, $g^{-1}(V)$ is b* \hat{g} -closed in Y. Since f is b*ĝ-continuous, $f^{-1}(g^{-1}(V))$ $(g \circ f)^{-1}(V)$ is both open and closed in X. Hence $g \circ f$ is perfectly b* \hat{g} -continuous. - (iv) Let V be a closed set in Z. Since g is b*ĝcontinuous, $g^{-1}(V)$ is b* \hat{g} -closed in Y. Since f is b*ĝ-continuous, $f^{-1}(g^{-1}(V))$ $(g \circ f)^{-1}(V)$ is both open and closed in X. Hence $g \circ f$ is perfectly continuous. - (v) Let V be a b*ĝ-closed set in Z. Since g is strongly $b*\hat{g}$ -continuous, $g^{-1}(V)$ is closed in Y. Since f is perfectly continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is both open and closed in X. Hence $g \circ f$ is perfectly b*g-continuous. # 6. TOTALLY b*2-CONTINUOUS FUNCTION **Definition 6.1:** The function $f:(X,\tau) \to (Y,\sigma)$ is said to be totally b*g-continuous if the inverse image of every closed set in Y is b* \hat{g} -clopen in X. That is, $f^{-1}(V)$ is b* \hat{g} -clopen of (X, τ) for every closed set V of (Y, σ) . **Example 6.2:** Let $X = Y = \{a,b,c\}$ with topologies $\tau =$ $\{X, \phi, \{a\}, \{b\}, \{a,b\}\}\$ and $\sigma = \{Y, \phi, \{c\}, \{a,b\}\}\$; $b*\hat{g}C(X)$ = $\{X,\phi,\{a\}, \{b\}, \{c\},\{b,c\},\{a,c\}\}; b*\hat{g}O(X) = \{X,\phi,\{a,c\}\}; b*\hat{g}O$ $\{a\},\{b\},\{a,b\},\{b,c\},\{a,c\}\}; C(Y) = \{Y,\phi,\{c\},\{a,b\}\}.$ Define a map $f:(X,\tau) \to (Y,\sigma)$ by f(a) = b, f(b) = c, f(c) = a. Here, f is totally b* \hat{g} -continuous, since the inverse image of C(Y) {c} and {a,b} are {b} and {a,c} respectively which are both $b*\hat{g}C(X)$ and $b*\hat{g}O(X)$. **Theorem 6.3:** Every perfectly b*g-continuous function is totally b*g-continuous. **Proof:** Let $f:(X,\tau) \to (Y,\sigma)$ be perfectly b* \hat{g} continuous and V be any closed set in Y. By proposition 3.4 in [1], V is $b*\hat{g}$ -closed in Y. Since f is perfectly $b*\hat{g}$ continuous, $f^{-1}(V)$ is both open and closed in X. Again by proposition 3.4 in [1], $f^{-1}(V)$ is both b* \hat{g} -open and $b*\hat{g}$ -closed in X. Hence f is totally $b*\hat{g}$ -continuous. Remark 6.4: The converse of the above theorem need not be true as can be seen from the following example. **Example 6.5:** Let $X = Y = \{a,b,c\}$ with topologies $\tau =$ $\{Y,\phi,\{b\}\};\ b*\hat{g}C(Y) = \{Y,\phi,\{b\},\{a,b\},\{b,c\}\};\ C(X) = \{x,\phi,\{b\},\{a,b\},\{b,c\}\};\ \{x,\phi,\{b\},\{a,b\},\{a,b\},\{b,c\}\};\ C(X) = \{x,\phi,\{b\},\{a,b\},\{a,b\},\{b,c\}\};\ C(X) = \{x,\phi,\{b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\},\{a,b\}$ $\{b\},\{a,b\}, \{b,c\}\}; b*\hat{g}O(X) = \{X,\phi,\{a\},\{c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{a,c\},\{$ $\{b,c\}\}$. Define a map $f:(X,\tau) \to (Y,\sigma)$ by f(a) = b, f(b) = c, f(c) = a. Here, the inverse image of closed set in $Y \{b\}$ is $\{a\}$ respectively which is both $b*\hat{g}$ -open and $b*\hat{g}$ -closed in X but the inverse image of $b*\hat{g}C(Y)$ {a,b} is {a,c} which is open but not closed in X. Hence f is totally $b*\hat{g}$ -continuous but not perfectly $b*\hat{g}$ continuous. **Theorem 6.6:** Every totally b*g-continuous function is b*ĝ-continuous. **Proof:** Let $f:(X,\tau) \to (Y,\sigma)$ be totally b* \hat{g} -continuous and V be any closed set in Y. Since f is totally $b*\hat{g}$ continuous, $f^{-1}(V)$ is both b* \hat{g} -open and b* \hat{g} -closed in X. Hence f is $b*\hat{g}$ -continuous. **Theorem 6.7:** Let $f:(X,\tau) \to (Y,\sigma)$ and $g:(Y,\sigma) \to$ (Z, δ) be the two functions. Then the following holds: - If f is $b*\hat{g}$ -irresolute and g is totally $b*\hat{g}$ continuous, then $g \circ f$ is totally b* \hat{g} -continuous. - If f is totally b* \hat{g} -continuous and g is continuous, (ii) then $g \circ f$ is totally b* \hat{g} -continuous. #### **Proof:** - Let V be any closed set in Z. Since g is totally (i) $b*\hat{g}$ -continuous, $g^{-1}(V)$ is both $b*\hat{g}$ -open and $b*\hat{g}$ -closed in Y. Since f is $b*\hat{g}$ -irresolute, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is both b*\hat{g}-open $b*\hat{g}$ -closed in X. Hence $g \circ f$ is totally b*g-continuous. - (ii) Let V be any closed set in Z. Since g continuous, $g^{-1}(V)$ is closed in Y. Since f is $f^{-1}(g^{-1}(V))$ totally b*ĝ-continuous, $(g \circ f)^{-1}(V)$ is both b* \hat{g} -open and b* \hat{g} -closed in X. Hence $g \circ f$ is totally b* \hat{g} -continuous. #### 7. References - [1] K.Bala Deepa Arasi and G.Subasini, On b*g-closed sets in topological spaces, International Research Journal of Mathematics, Engineering and IT, Vol.2, Issue 12, December 2015. - [2] K. Bala Deepa Arasi and M. Mari Vidhya, On b*gcontinuous functions and b*\hat{g}-open maps in topological spaces, International Journal of Mathematics Archieve-8(7), 2017, 121-128. - [3] K. Bala Deepa Arasi and M. Mari Vidhya, On Contra b*ĝ-continuous functions and b*ĝ-open maps in topological spaces, International Journal of Science, Engineering and Management, Vol.2, Issue December 2017. - [4] R.C. Jain and A.R. Singal, Slightly continuous mappings, Indian Math. Soc., 64(1997), 195-203. - [5] N. Levine, Strong continuity in topological spaces, Amer. Math. Monthly, 67(1960). - [6] T. Noiri, Super-continuity and some strong forms of continuity, Indian J. Pure. Appl. Math., 15(1984), 241-250.